Solved

In the Simple, One-Explanatory Variable, Errors-In-Variables Model, the OLS Estimator

Question 6

Essay

In the simple, one-explanatory variable, errors-in-variables model, the OLS estimator for the slope is inconsistent. The textbook derived the following result β^1pσX2σX2+σw2β1\hat { \beta } _ { 1 } \stackrel { p } { \longrightarrow } \frac { \sigma _ { X } ^ { 2 } } { \sigma _ { X } ^ { 2 } + \sigma _ { w } ^ { 2 } } \beta _ { 1 } Show that the OLS estimator for the intercept behaves as follows in large samples: β^1pβ0+μX~σw2σX2+σw2β1\hat { \beta } _ { 1 } \stackrel { p } { \rightarrow } \beta _ { 0 } + \mu \widetilde { \mathrm { X } } \frac { \sigma _ { w } ^ { 2 } } { \sigma _ { \mathrm { X } } ^ { 2 } + \sigma _ { w } ^ { 2 } } \beta _ { 1 } where Xˉ\bar { X } p\stackrel { p } { \rightarrow } μX~{ } ^ { { } ^ { \mu } } \widetilde { X }

Correct Answer:

verifed

Verified

blured image_TB5979_11_TB5979_11_TB5979_11_TB5979_11...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions