Solved

(Requires Appendix Material)The Relationship Between the TSLS Slope and the Corresponding

Question 18

Multiple Choice

(Requires Appendix material) The relationship between the TSLS slope and the corresponding population parameter is:


A) (β^1TSLS β1) =1ni=1n(ZiZˉ) ui1ni=1n(ZiZˉ) (XiXˉ) \left( \hat { \beta } _ { 1 } ^ { \text {TSLS } } - \beta _ { 1 } \right) = \frac { \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( Z _ { i } - \bar { Z } \right) u _ { i } } { \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( Z _ { i } - \bar { Z } \right) \left( X _ { i } - \bar { X } \right) }
B) (β^1TSLS β1) =1ni=1n(ZiZˉ) 1ni=1n(ZiZˉ) (XiXˉ) \left( \hat { \beta } _ { 1 } ^ { \text {TSLS } } - \beta _ { 1 } \right) = \frac { \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( Z _ { i } - \bar { Z } \right) } { \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( Z _ { i } - \bar { Z } \right) \left( X _ { i } - \bar { X } \right) }
C) (β^1TSLSβ1) =1ni=1n(ZiZˉ) ui1ni=1n(ZiZˉ) 2\left( \hat { \beta } _ { 1 } ^ { T SLS } - \beta _ { 1 } \right) = \frac { \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( Z _ { i } - \bar { Z } \right) u _ { i } } { \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( Z _ { i } - \bar { Z }) ^ { 2 } \right. }
D) (β^1TSLS β1) =1ni=1n(XiXˉ) ui1ni=1n(ZiZˉ) (XiXˉ) \left( \hat { \beta } _ { 1 } ^ { \text {TSLS } } - \beta _ { 1 } \right) = \frac { \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( X _ { i } - \bar { X } \right) u _ { i } } { \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( Z _ { i } - \bar { Z } \right) \left( X _ { i } - \bar { X } \right) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions