Solved

The OLS Estimator Is a Linear Estimator β^\hat { \beta }

Question 46

Multiple Choice

The OLS estimator is a linear estimator, β^\hat { \beta } 1 = i=1na^iYi\sum _ { i = 1 } ^ { n } \hat { a } _ { i } Y _ { i } , where a^\hat a i =


A) XiXˉj=1n(XjXˉ) 2\frac { X _ { i } - \bar { X } } { \sum _ { j = 1 } ^ { n } \left( X _ { j } - \bar { X } \right) ^ { 2 } }
B) 1n\frac { 1 } { n }
C) XiXˉj=1n(XjXˉ) \frac { X _ { i } - \bar { X } } { \sum _ { j = 1 } ^ { n } \left( X _ { j } - \bar { X } \right) }
D) Xij=1n(XjXˉ) 2\frac { X _ { i } } { \sum _ { j = 1 } ^ { n } \left( X _ { j } - \bar { X } \right) ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions