Solved

Assume That the Data Looks as Follows:
Y = (Y1Y2OYn) \left( \begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\O \\Y _ { n }\end{array}\right)

Question 14

Essay

Assume that the data looks as follows:
Y = (Y1Y2OYn) \left( \begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\O \\Y _ { n }\end{array}\right) , U = (u1u2Oun)\left( \begin{array} { c } u _ { 1 } \\u _ { 2 } \\\mathrm { O } \\u _ { n }\end{array} \right) , X = (X11X12OX1n)\left( \begin{array} { l } X _ { 11 } \\X _ { 12 } \\\mathrm { O } \\X _ { 1 n }\end{array} \right) , and β = (β1)
Using the formula for the OLS estimator β^\hat { \beta } = ( XX ^ { \prime } X)-1
XX ^ { \prime } Y, derive the formula for β^\hat { \beta } 1, the only slope in this "regression through the origin."

Correct Answer:

verifed

Verified

In this case, blured image_TB5979_11_TB5979_11_TB597...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions