Solved

Consider the Model Y = β0 + β1x + β2d

Question 68

Multiple Choice

Consider the model y = β0 + β1x + β2d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________.


A) Consider the model y = β<sub>0 </sub>+ β<sub>1</sub>x + β<sub>2</sub>d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________. A)    = b<sub>0 </sub>+ b<sub>1</sub>x + b<sub>2</sub>x B)    = b<sub>0 </sub>+ b<sub>1</sub>x C)    = (b<sub>0 </sub>+ b<sub>1</sub>) x + b<sub>2</sub> <sub> D)  </sub> <sub> </sub>   = (b<sub>0 </sub>+ b<sub>2</sub>)  + b<sub>1</sub>x = b0 + b1x + b2x
B) Consider the model y = β<sub>0 </sub>+ β<sub>1</sub>x + β<sub>2</sub>d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________. A)    = b<sub>0 </sub>+ b<sub>1</sub>x + b<sub>2</sub>x B)    = b<sub>0 </sub>+ b<sub>1</sub>x C)    = (b<sub>0 </sub>+ b<sub>1</sub>) x + b<sub>2</sub> <sub> D)  </sub> <sub> </sub>   = (b<sub>0 </sub>+ b<sub>2</sub>)  + b<sub>1</sub>x = b0 + b1x
C) Consider the model y = β<sub>0 </sub>+ β<sub>1</sub>x + β<sub>2</sub>d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________. A)    = b<sub>0 </sub>+ b<sub>1</sub>x + b<sub>2</sub>x B)    = b<sub>0 </sub>+ b<sub>1</sub>x C)    = (b<sub>0 </sub>+ b<sub>1</sub>) x + b<sub>2</sub> <sub> D)  </sub> <sub> </sub>   = (b<sub>0 </sub>+ b<sub>2</sub>)  + b<sub>1</sub>x = (b0 + b1) x + b2
D)
Consider the model y = β<sub>0 </sub>+ β<sub>1</sub>x + β<sub>2</sub>d + ε, where x is a quantitative variable and d is a dummy variable. When d = 1, the predicted value of y ________. A)    = b<sub>0 </sub>+ b<sub>1</sub>x + b<sub>2</sub>x B)    = b<sub>0 </sub>+ b<sub>1</sub>x C)    = (b<sub>0 </sub>+ b<sub>1</sub>) x + b<sub>2</sub> <sub> D)  </sub> <sub> </sub>   = (b<sub>0 </sub>+ b<sub>2</sub>)  + b<sub>1</sub>x = (b0 + b2) + b1x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions