Assuming a Method Int FindMax(int Array[ ],Int Last)that Returns the Subscript of the Subscript
Multiple Choice
Assuming a method
Int findMax(int array[ ],int last) that returns the subscript of the largest value in the portion of an array whose elements are at 0 through last (inclusive) ,a recursive method for sorting in ascending order a portion of an array between 0 and last,inclusive,can be written as follows:
Void rSort(int array[ ],int last) {
If (last >= 1) {
// Missing code
}
}
If a method
Void swap(int array[ ],int pos1,int pos2) can be used to swap the contents of two array entries,then the logic for the missing code is
A) findMax(array,array.length-1) ;rSort(array,array.length-1) ;
B) int p = findMax(array,array.length-1.;rSort(array,p.;
C) int p = findMax(array,last.;swap(array,p,last.;rSort(array,last-1.;
D) rSort(array,last-1.;int p = findMax(array,last.;swap(array,p,last.;
Correct Answer:

Verified
Correct Answer:
Verified
Q8: Consider the following implementation of insertion sort:<br>Public
Q9: The insertion sort algorithm works by<br>A) repeatedly
Q10: A search for an item X in
Q11: If lower is the first subscript in
Q12: A contigous segment of an array is
Q14: Let F be an algorithm with complexity
Q15: The binary search algorithm<br>A) cannot be used
Q16: Linear time is the class of all
Q17: The compareTo method of the Comparable interface<br>A)
Q18: For a computational problem,the input size<br>A) is