Solved

Use the Definitions (Not a Calculator) to Evaluate the Six 3π2\frac { 3 \pi } { 2 }

Question 17

Multiple Choice

Use the definitions (not a calculator) to evaluate the six trigonometric functions of the given angle: 3π2\frac { 3 \pi } { 2 }


A) cos3π2=0\cos \frac { 3 \pi } { 2 } = 0 , sin3π2=1\sin \frac { 3 \pi } { 2 } = - 1 , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
B) cos3π2=1\cos \frac { 3 \pi } { 2 } = - 1 , sin3π2=1\sin \frac { 3 \pi } { 2 } = 1 , tan3π2=0\tan \frac { 3 \pi } { 2 } = 0 , sec3π2=1\sec \frac { 3 \pi } { 2 } = - 1 , cot3π2\cot \frac { 3 \pi } { 2 } is undefined, csc3π2\csc \frac { 3 \pi } { 2 } is undefined.
C) cos3π2=1\cos \frac { 3 \pi } { 2 } = 1 , sin3π2=1\sin \frac { 3 \pi } { 2 } = 1 , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
D) cos3π2=12\cos \frac { 3 \pi } { 2 } = - \frac { 1 } { 2 } , sin3π2=32\sin \frac { 3 \pi } { 2 } = \frac { \sqrt { 3 } } { 2 } , tan3π2=0\tan \frac { 3 \pi } { 2 } = 0 , sec3π2=1\sec \frac { 3 \pi } { 2 } = - 1 , cot3π2\cot \frac { 3 \pi } { 2 } is undefined, csc3π2\csc \frac { 3 \pi } { 2 } is undefined.
E) cos3π2=12\cos \frac { 3 \pi } { 2 } = - \frac { 1 } { 2 } , sin3π2=32\sin \frac { 3 \pi } { 2 } = \frac { \sqrt { 3 } } { 2 } , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions