Solved

Let P(x,y)P ( x , y ) Denote the Point Where the Terminal Side of Angle

Question 5

Multiple Choice

Let P(x,y) P ( x , y ) denote the point where the terminal side of angle θ\theta (in standard position) meets the unit circle. Use the information to evaluate the six trigonometric functions of θ\theta . PP is in Quadrant IV and y=34y = - \frac { 3 } { 4 } .


A) sinθ=74\sin \theta = - \frac { \sqrt { 7 } } { 4 } , cosθ=34\cos \theta = \frac { 3 } { 4 } , tanθ=73\tan \theta = - \frac { \sqrt { 7 } } { 3 } , secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=477\csc \theta = \frac { 4 \sqrt { 7 } } { 7 } , cotθ=377\cot \theta = \frac { 3 \sqrt { 7 } } { 7 }
B) sinθ=74\sin \theta = - \frac { \sqrt { 7 } } { 4 } , cosθ=34\cos \theta = \frac { 3 } { 4 } , tanθ=73\tan \theta = \frac { \sqrt { 7 } } { 3 } , secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=477\csc \theta = - \frac { 4 \sqrt { 7 } } { 7 } , cotθ=377\cot \theta = \frac { 3 \sqrt { 7 } } { 7 }
C) sinθ=34\sin \theta = - \frac { 3 } { 4 } , cosθ=74\cos \theta = \frac { \sqrt { 7 } } { 4 } , tanθ=377\tan \theta = - \frac { 3 \sqrt { 7 } } { 7 } , secθ=477\sec \theta = \frac { 4 \sqrt { 7 } } { 7 } , cscθ=43\csc \theta = - \frac { 4 } { 3 } , cotθ=73\cot \theta = - \frac { \sqrt { 7 } } { 3 }
D) sinθ=74cosθ=34tanθ=73\sin \theta = \frac { \sqrt { 7 } } { 4 } \quad \cos \theta = - \frac { 3 } { 4 } \quad \tan \theta = - \frac { \sqrt { 7 } } { 3 } secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=77\csc \theta = \frac { \sqrt { 7 } } { 7 } , cotθ=77\cot \theta = - \frac { \sqrt { 7 } } { 7 }
E) sinθ=34\sin \theta = \frac { 3 } { 4 } , cosθ=74\cos \theta = - \frac { \sqrt { 7 } } { 4 } , tanθ=377\tan \theta = \frac { 3 \sqrt { 7 } } { 7 } , secθ=477\sec \theta = - \frac { 4 \sqrt { 7 } } { 7 } , cscθ=43\csc \theta = \frac { 4 } { 3 } , cotθ=73\cot \theta = \frac { \sqrt { 7 } } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions