Solved

Use the Following Information to Express the Remaining Five Trigonometric uu

Question 20

Multiple Choice

Use the following information to express the remaining five trigonometric values as functions of uu . Assume that uu is positive. Rationalize any denominators that contain radicals. cosθ=u10,0<θ<90\cos \theta = \frac { u } { \sqrt { 10 } } , 0 ^ { \circ } < \theta < 90 ^ { \circ }


A) tanθ=1u2u,secθ=10u,sinθ=1010u210,cotθ=u1u21u2,cscθ=1010u21u2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = - \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = - \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
B) tanθ=u1u21u2,secθ=1010u21u2,sinθ=1010u210,cotθ=1u2u,cscθ=10u.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}
C) tanθ=10u2u,secθ=10u,sinθ=10010u2,10,cotθ=u10u2,10u2,cscθ=10010u210u2.\begin{array} { l } \tan \theta = \frac { \sqrt { 10 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } , } { 10 } , \\\cot \theta = \frac { u \sqrt { 10 - u ^ { 2 } } , } { 10 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 100 - 10 u ^ { 2 } } } { 10 - u ^ { 2 } } .\end{array}
D) tanθ=u1u21u2,secθ=10u,sinθ=1010u210,cotθ=1u2u,cscθ=1010u21u2.\begin{array} { l } \tan \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sec \theta = \frac { \sqrt { 10 } } { u } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \csc \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } .\end{array}
E) tanθ=1u2u,secθ=1010u21u2,sinθ=1010u210,cotθ=u1u21u2,cscθ=10u.\begin{array} { l } \tan \theta = \frac { \sqrt { 1 - u ^ { 2 } } } { u } , \quad \sec \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 10 - 10 u ^ { 2 } } } { 10 } , \\\cot \theta = \frac { u \sqrt { 1 - u ^ { 2 } } } { 1 - u ^ { 2 } } , \quad \csc \theta = \frac { \sqrt { 10 } } { u } .\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions