Solved

Determine the Domain and the Range g(x)=11x203x18g ( x ) = \frac { 11 x - 20 } { 3 x - 18 }

Question 23

Multiple Choice

Determine the domain and the range. g(x) =11x203x18g ( x ) = \frac { 11 x - 20 } { 3 x - 18 }


A) domain: (,113) (113,) \left( - \infty , \frac { 11 } { 3 } \right) \cup \left( \frac { 11 } { 3 } , \infty \right) range: (,6) (6,) ( - \infty , 6 ) \cup ( 6 , \infty ) ;
B) domain: (,6) (6,) ( - \infty , 6 ) \cup ( 6 , \infty ) ; range: (,2011) (2011,) \left( - \infty , \frac { 20 } { 11 } \right) \cup \left( \frac { 20 } { 11 } , \infty \right)
C) domain: (,6) (6,) ( - \infty , 6 ) \cup ( 6 , \infty ) ; range: (,113) (113,) \left( - \infty , \frac { 11 } { 3 } \right) \cup \left( \frac { 11 } { 3 } , \infty \right)
D) domain: (,6) (6,) ( - \infty , 6 ) \cup ( 6 , \infty ) ; range: (,311) (311,) \left( - \infty , \frac { 3 } { 11 } \right) \cup \left( \frac { 3 } { 11 } , \infty \right)
E) domain: (,6) (6,) ( - \infty , 6 ) \cup ( 6 , \infty ) ; range: (,1118) (1118,) \left( - \infty , \frac { 11 } { 18 } \right) \cup \left( \frac { 11 } { 18 } , \infty \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions