Solved

Use the Formula acosBx+bsinBx=Acos(BxC)a \cos B x + b \sin B x = A \cos ( B x - C )

Question 15

Multiple Choice

Use the formula acosBx+bsinBx=Acos(BxC) a \cos B x + b \sin B x = A \cos ( B x - C )  where A=a2+b2 and tanC=ba with π2<C<π2\text { where } A = \sqrt { a ^ { 2 } + b ^ { 2 } } \text { and } \tan C = \frac { b } { a } \text { with } - \frac { \pi } { 2 } < C < \frac { \pi } { 2 } to determine the amplitude of f (x) . f(x) =2cos4x2sin4xf ( x ) = 2 \cos 4 x - 2 \sin 4 x


A) A=112A = 11 \sqrt { 2 }
B) A=92A = 9 \sqrt { 2 }
C) A=26A = 2 \sqrt { 6 }
D) A=22A = 2 \sqrt { 2 }
E) A=2A = 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions