Solved

Use the Formula acosBx+bsinBx=Acos(BxC)a \cos B x + b \sin B x = A \cos ( B x - C )

Question 7

Multiple Choice

Use the formula acosBx+bsinBx=Acos(BxC) a \cos B x + b \sin B x = A \cos ( B x - C )  where A=a2+b2 and tanC=ba with π2<C<π2\text { where } A = \sqrt { a ^ { 2 } + b ^ { 2 } } \text { and } \tan C = \frac { b } { a } \text { with } - \frac { \pi } { 2 } < C < \frac { \pi } { 2 } to determine the period of f (x) . f(x) =7cos12x7sin12xf ( x ) = 7 \cos 12 x - 7 \sin 12 x


A) π7\frac { \pi } { 7 }
B) π6\frac { \pi } { 6 }
C) π4\frac { \pi } { 4 }
D) 6π6 \pi
E) π12\frac { \pi } { 12 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions