Solved

Find the Exact Values of the Six Trigonometric Functions of the Angle

Question 11

Multiple Choice

Find the exact values of the six trigonometric functions of the angle, whenever possible. θ=180\theta = 180 ^ { \circ }


A) sinθ=22,cscθ=2,tanθ=1cosθ=22,secθ=2,cotθ=1\begin{array} { l } \sin \theta = \frac { \sqrt { 2 } } { 2 } , \csc \theta = \sqrt { 2 } , \tan \theta = - 1 \\\cos \theta = - \frac { \sqrt { 2 } } { 2 } , \sec \theta = - \sqrt { 2 } , \cot \theta = 1\end{array}
B) sinθ=0,cscθ=1,tanθ=\sin \theta = 0 , \csc \theta = - 1 , \tan \theta = undefined
cosθ=1,secθ= undefined, cotθ=0\cos \theta = - 1 , \sec \theta = \text { undefined, } \cot \theta = 0
C) sinθ=22,cscθ=2,tanθ=1cosθ=22,secθ=2,cotθ=1\begin{array} { l } \sin \theta = - \frac { \sqrt { 2 } } { 2 } , \csc \theta = - \sqrt { 2 } , \tan \theta = - 1 \\\cos \theta = - \frac { \sqrt { 2 } } { 2 } , \sec \theta = - \sqrt { 2 } , \cot \theta = - 1\end{array}
D) sinθ=22,cscθ=2,tanθ=1cosθ=22,secθ=2,cotθ=1\begin{array} { l } \sin \theta = \frac { \sqrt { 2 } } { 2 } , \csc \theta = \sqrt { 2 } , \tan \theta = 1 \\\cos \theta = \frac { \sqrt { 2 } } { 2 } , \sec \theta = \sqrt { 2 } , \cot \theta = 1\end{array}
E) sinθ=0,cscθ=\sin \theta = 0 , \csc \theta = undefined, tanθ=0\tan \theta = 0
cosθ=1,secθ=1,cotθ=\cos \theta = - 1 , \sec \theta = - 1 , \cot \theta = undefined

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions