menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus and Its Applications
  4. Exam
    Exam 9: Techniques of Integration
  5. Question
    Approximate\(\int _ { 0 } ^ { 4 } 2 x d x\)
Solved

Approximate ∫042xdx\int _ { 0 } ^ { 4 } 2 x d x∫04​2xdx

Question 50

Question 50

Short Answer

Approximate ∫042xdx\int _ { 0 } ^ { 4 } 2 x d x∫04​2xdx ; n = 4, by (a) the trapezoidal rule, (b) the midpoint rule, and (c) then find the exact value of the integral.
Enter just three integers separated by commas answering (a), (b), (c) in that order but unlabeled.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q45: <span class="ql-formula" data-value="\int"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∫</mo></mrow><annotation encoding="application/x-tex">\int</annotation></semantics></math></span><span

Q46: <span class="ql-formula" data-value="\int \tan x d x"><span

Q47: Determine the integral by making an

Q48: Approximate <span class="ql-formula" data-value="\int _

Q49: <span class="ql-formula" data-value="\int _ { 0 }

Q51: <span class="ql-formula" data-value="\int _ { 0 }

Q52: <span class="ql-formula" data-value="\int \tan x \ln (

Q53: Decide whether integration by parts or

Q54: Evaluate the integral using integration by

Q55: Evaluate the integral using integration by

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines