menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus and Its Applications
  4. Exam
    Exam 9: Techniques of Integration
  5. Question
    Approximate\(\int _ { 0 } ^ { 1 } x ^ { 4 }\)
Solved

Approximate ∫01x4\int _ { 0 } ^ { 1 } x ^ { 4 }∫01​x4

Question 24

Question 24

Short Answer

Approximate ∫01x4\int _ { 0 } ^ { 1 } x ^ { 4 }∫01​x4 dx; n = 4, by (a) Simpson's rule and (b) the trapezoidal rule.
Enter your answers in that order as just unlabeled real numbers rounded to two decimal places, separated by a comma.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q19: <span class="ql-formula" data-value="\int x \sqrt { x

Q20: Does this integral <span class="ql-formula"

Q21: <span class="ql-formula" data-value="\int 4 x ^ {

Q22: Evaluate the integral. <br>- <span class="ql-formula"

Q23: Approximate <span class="ql-formula" data-value="\int _

Q25: <span class="ql-formula" data-value="\int"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∫</mo></mrow><annotation encoding="application/x-tex">\int</annotation></semantics></math></span><span

Q26: <span class="ql-formula" data-value="\int _ { - \infty

Q27: Does this integral <span class="ql-formula"

Q28: <span class="ql-formula" data-value="\int \left( 3 x ^

Q29: Does this integral <span class="ql-formula"

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines