menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus and Its Applications
  4. Exam
    Exam 9: Techniques of Integration
  5. Question
    Evaluate the Improper Integral Whenever It Is Convergent\(\int _ { - \infty } ^ { 0 } e ^ { 10 x }\)
Solved

Evaluate the Improper Integral Whenever It Is Convergent ∫−∞0e10x\int _ { - \infty } ^ { 0 } e ^ { 10 x }∫−∞0​e10x

Question 30

Question 30

Multiple Choice

Evaluate the improper integral whenever it is convergent. If it is divergent, state this.
- ∫−∞0e10x\int _ { - \infty } ^ { 0 } e ^ { 10 x }∫−∞0​e10x dx


A) 0
B) -1
C) 1
D) divergent
E) 110\frac { 1 } { 10 }101​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q25: <span class="ql-formula" data-value="\int"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∫</mo></mrow><annotation encoding="application/x-tex">\int</annotation></semantics></math></span><span

Q26: <span class="ql-formula" data-value="\int _ { - \infty

Q27: Does this integral <span class="ql-formula"

Q28: <span class="ql-formula" data-value="\int \left( 3 x ^

Q29: Does this integral <span class="ql-formula"

Q31: Determine the integral by making an

Q32: Find the area of the shaded

Q33: Evaluate the integral using integration by

Q34: Does this integral <span class="ql-formula"

Q35: If the annual rate of return

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines