Solved

Suppose the Partial Derivatives of a Lagrange Function F(x, Y Fx\frac { \partial F } { \partial x }

Question 114

Multiple Choice

Suppose the partial derivatives of a Lagrange function F(x, y, λ) are Fx\frac { \partial F } { \partial x } = 2 - 8λx, Fy\frac { \partial \mathrm { F } } { \partial \mathrm { y } } = 1 -2λy, Fλ=324x2y2\frac { \partial F } { \partial \lambda } = 32 - 4 x ^ { 2 } - y ^ { 2 } What values of x and y minimize F(x, y, λ) ? (Assume x and y are positive.)


A) (4, 2)
B) (2, 4)
C) (2 2\sqrt { 2 } , 4\sqrt { 4 } )
D) (2, 2\sqrt { 2 } )
E) none of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions