Solved

Given f(x)=ex+x;0x2,n=6,f ( x ) = e ^ { x } + x ; 0 \leq x \leq 2 , n = 6 ,

Question 68

True/False

Given f(x)=ex+x;0x2,n=6,f ( x ) = e ^ { x } + x ; 0 \leq x \leq 2 , n = 6 , set up a Riemann sum to approximate the area under the graph of f(x) on the given interval. Use the left endpoints. Is the following the correct sum?
13[1+(e1/3+13)+(e2/3+23)+(e+1)+(e4/3+43)+(e5/3+53)]\frac { 1 } { 3 } \left[ 1 + \left( \mathrm { e } ^ { 1 / 3 } + \frac { 1 } { 3 } \right) + \left( \mathrm { e } ^ { 2 / 3 } + \frac { 2 } { 3 } \right) + ( \mathrm { e } + 1 ) + \left( \mathrm { e } ^ { 4 / 3 } + \frac { 4 } { 3 } \right) + \left( \mathrm { e } ^ { 5 / 3 } + \frac { 5 } { 3 } \right) \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions