Solved

Refer to the Information in the Graph Below 23x+4(4x2)dx\int _ { - 2 } ^ { - 3 x + 4 } \left( 4 - x ^ { 2 } \right) d x

Question 2

Multiple Choice

Refer to the information in the graph below. Set up a definite integral or sum of definite integrals that gives the area of the shaded portion.  Refer to the information in the graph below. Set up a definite integral or sum of definite integrals that gives the area of the shaded portion.   A)   \int _ { - 2 } ^ { - 3 x + 4 } \left( 4 - x ^ { 2 } \right)  d x  B)   \int _ { - 2 } ^ { 0 } \left( 4 - x ^ { 2 } \right)  d x  +  \int _ { 0 } ^ { 1 } [ 4 - ( - 3 x + 4 )  ] d x  C)   \int _ { - 2 } ^ { 1 } \left[ 4 + ( - 3 x + 4 )  - x ^ { 2 } \right] d x  D)   \int _ { - 2 } ^ { 0 } \left( 4 - x ^ { 2 } \right)  d x  +  \int _ { 0 } ^ { 1 } \left( - 3 x + 4 - x ^ { 2 } \right)  d x  E)  none of these


A) 23x+4(4x2) dx\int _ { - 2 } ^ { - 3 x + 4 } \left( 4 - x ^ { 2 } \right) d x
B) 20(4x2) dx\int _ { - 2 } ^ { 0 } \left( 4 - x ^ { 2 } \right) d x + 01[4(3x+4) ]dx\int _ { 0 } ^ { 1 } [ 4 - ( - 3 x + 4 ) ] d x
C) 21[4+(3x+4) x2]dx\int _ { - 2 } ^ { 1 } \left[ 4 + ( - 3 x + 4 ) - x ^ { 2 } \right] d x
D) 20(4x2) dx\int _ { - 2 } ^ { 0 } \left( 4 - x ^ { 2 } \right) d x + 01(3x+4x2) dx\int _ { 0 } ^ { 1 } \left( - 3 x + 4 - x ^ { 2 } \right) d x
E) none of these

Correct Answer:

verifed

Verified

Related Questions