Solved

Let X Be a Continuous Random Variable with a Cumulative F(x)=1ex2(x0)\mathrm { F } ( \mathrm { x } ) = 1 - \mathrm { e } ^ { - \mathrm { x } ^ { 2 } } ( \mathrm { x } \geq 0 )

Question 7

Multiple Choice

Let X be a continuous random variable with a cumulative distribution function F(x) =1ex2(x0) \mathrm { F } ( \mathrm { x } ) = 1 - \mathrm { e } ^ { - \mathrm { x } ^ { 2 } } ( \mathrm { x } \geq 0 ) . Find Pr(1X2) \operatorname { Pr } ( 1 \leq X \leq 2 )


A) e1\mathrm { e } ^ { - 1 } - e4e ^ { - 4 }
B) e1\mathrm { e } ^ { - 1 } - e2e ^ { - 2 }
C) 1 - e1\mathrm { e } ^ { - 1 } - e2e ^ { - 2 }
D) e1\mathrm { e } ^ { - 1 } - e2e ^ { - 2 } - 2
E) none of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions