Solved

Below Is a Graph of Function F(x) x=a?x = a ?

Question 92

Multiple Choice

Below is a graph of function f(x) . Which of the following could be the second Taylor polynomial of f(x) at x=a?x = a ?  Below is a graph of function f(x) . Which of the following could be the second Taylor polynomial of f(x)  at  x = a ?    A)   \mathrm { P } 2  (x)  =  \frac { 13 } { 3 }  +  \frac { 5 } { 3 }  (x - a)  B)   \mathrm { P } 2  (x)  =  \frac { 13 } { 3 }  +  \frac { 2 } { 3 }   ( x - a )  ^ { 2 }  C)   \mathrm { P } 2  (x)  =  \frac { 13 } { 3 }  -  \frac { 2 } { 3 }   ( x - a )  ^ { 2 }  D)   \mathrm { P } 2  (x)  =  \frac { 13 } { 3 }  -  \frac { 5 } { 3 }  (x - a)  +  \frac { 2 } { 3 }   ( x - a )  ^ { 2 }  E)   \mathrm { P } 2  (x)  =  \frac { 5 } { 3 }  (x - a)  -  \frac { 2 } { 3 }   ( x - a )  ^ { 2 }


A) P2\mathrm { P } 2 (x) = 133\frac { 13 } { 3 } + 53\frac { 5 } { 3 } (x - a)
B) P2\mathrm { P } 2 (x) = 133\frac { 13 } { 3 } + 23\frac { 2 } { 3 } (xa) 2( x - a ) ^ { 2 }
C) P2\mathrm { P } 2 (x) = 133\frac { 13 } { 3 } - 23\frac { 2 } { 3 } (xa) 2( x - a ) ^ { 2 }
D) P2\mathrm { P } 2 (x) = 133\frac { 13 } { 3 } - 53\frac { 5 } { 3 } (x - a) + 23\frac { 2 } { 3 } (xa) 2( x - a ) ^ { 2 }
E) P2\mathrm { P } 2 (x) = 53\frac { 5 } { 3 } (x - a) - 23\frac { 2 } { 3 } (xa) 2( x - a ) ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions