Solved

Selena States That SfSi=nRln(VfVi)S _ { f } - S _ { i } = n R \ln \left( \frac { V _ { f } } { V _ { i } } \right)

Question 23

Multiple Choice

Selena states that SfSi=nRln(VfVi) S _ { f } - S _ { i } = n R \ln \left( \frac { V _ { f } } { V _ { i } } \right) proves that entropy has a definite value at the beginning and end of an adiabatic free expansion.Ron says SfSi=kBln(WfWi) S _ { f } - S _ { i } = k _ { B } \ln \left( \frac { W _ { f } } { W _ { i } } \right) ,where W is the number of microstates of a given macrostate.Which one,if either,is correct?


A) Only Selena,because entropy can depend only on macroscopic variables.
B) Only Ron,because entropy can depend only on microscopic variables.
C) Only Selena,because (VfVi) =(TfTi) \left( \frac { V _ { f } } { V _ { i } } \right) = \left( \frac { T _ { f } } { T _ { i } } \right) in an adiabatic free expansion.
D) Neither,because we cannot calculate changes in entropy in an adiabatic free expansion.
E) Both,because entropy,which is macroscopic is a function of microscopic disorder.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions