Solved

The Equation y=Asin(kx?t+π2)y = A \sin \left( k x - ? t + \frac { \pi } { 2 } \right)

Question 29

Multiple Choice

The equation y=Asin(kx?t+π2) y = A \sin \left( k x - ? t + \frac { \pi } { 2 } \right) is the same as


A) y=Asin(kxωt+π2) y = - A \sin \left( k x - \omega t + \frac { \pi } { 2 } \right)
B) y=Acos(kx?t) y = A \cos ( k x - ? t )
C) y=Acos(kxωt) y = - A \cos ( k x - \omega t )
D) y=Asin(kxωtπ2) y = - A \sin \left( k x - \omega t - \frac { \pi } { 2 } \right)
E) y=Asin(kxωt+3π2) y = A \sin \left( k x - \omega t + \frac { 3 \pi } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions