Solved

Which of the Following Products of Ratios Gives the Conversion (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right)

Question 44

Multiple Choice

Which of the following products of ratios gives the conversion factor to convert miles per hour (mih) \left( \frac { \mathrm { mi } } { \mathrm { h } } \right) to meters per second (ms) \left( \frac { \mathrm { m } } { \mathrm { s } } \right) ?


A) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
B) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
D) 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
E) 5280fmi12inf2.54 cm1in1 m100 cm3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions