Solved

​Solve the System of Linear Equations​ {7x+7y+7z=021x+35y+28z=621x+42y+35z=1\left\{ \begin{array} { l l } 7 x + 7 y + 7 z & = 0 \\21 x + 35 y + 28 z & = 6 \\21 x + 42 y + 35 z & = 1\end{array} \right.

Question 42

Multiple Choice

​Solve the system of linear equations​ {7x+7y+7z=021x+35y+28z=621x+42y+35z=1\left\{ \begin{array} { l l } 7 x + 7 y + 7 z & = 0 \\21 x + 35 y + 28 z & = 6 \\21 x + 42 y + 35 z & = 1\end{array} \right. ​using the inverse matrix 17[111321332]\frac { 1 } { 7 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right] .


A) ​ [xyz]=[57117127]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 5 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 12 } { 7 }\end{array} \right]
B) ​ [xyz]=[57117167]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 16 } { 7 }\end{array} \right]
C) ​ [xyz]=[16757117]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 7 } \\\\\frac { 5 } { 7 } \\\\\frac { 11 } { 7 }\end{array} \right]
D) ​ [xyz]=[12711757]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 12 } { 7 } \\\\\frac { 11 } { 7 } \\\\\frac { - 5 } { 7 }\end{array} \right]
E) ​ [xyz]=[57167117]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 5 } { 7 } \\\\\frac { - 16 } { 7 } \\\\\frac { 11 } { 7 }\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions