Solved

​Solve the System of Linear Equations​ {9x+9y+9z=127x+45y+36z=327x+54y+45z=2\left\{ \begin{array} { l l } 9 x + 9 y + 9 z & = 1 \\27 x + 45 y + 36 z & = - 3 \\27 x + 54 y + 45 z & = 2\end{array} \right.

Question 31

Multiple Choice

​Solve the system of linear equations​ {9x+9y+9z=127x+45y+36z=327x+54y+45z=2\left\{ \begin{array} { l l } 9 x + 9 y + 9 z & = 1 \\27 x + 45 y + 36 z & = - 3 \\27 x + 54 y + 45 z & = 2\end{array} \right. ​using the inverse matrix 19[111321332]\frac { 1 } { 9 } \left[ \begin{array} { c c c } 1 & 1 & - 1 \\- 3 & 2 & - 1 \\3 & - 3 & 2\end{array} \right] .


A) ​ [xyz]=[592349]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 9 } \\\\\frac { - 2 } { 3 } \\\\\frac { 4 } { 9 }\end{array} \right]
B) ​ [xyz]=[49119169]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 4 } { 9 } \\\\\frac { - 11 } { 9 } \\\\\frac { 16 } { 9 }\end{array} \right]
C) ​ [xyz]=[119frac16949]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 11 } { 9 } \\\\\\frac { 16 } { 9 } \\\\\frac { - 4 } { 9 }\end{array} \right]
D) ​ [xyz]=[591329]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 9 } \\\\\frac { 1 } { 3 } \\\\\frac { - 2 } { 9 }\end{array} \right]
E) ​ [xyz]=[16949119]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 16 } { 9 } \\\\\frac { - 4 } { 9 } \\\\\frac { - 11 } { 9 }\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions