Solved

​Solve the System of Linear Equations {6x+18y+6z=112x+30y=218x+6y12z=1\left\{ \begin{array} { l l } - 6 x + 18 y + 6 z & = 1 \\12 x + 30 y & = 2 \\18 x + 6 y - 12 z & = - 1\end{array} \right.

Question 24

Multiple Choice

​Solve the system of linear equations {6x+18y+6z=112x+30y=218x+6y12z=1\left\{ \begin{array} { l l } - 6 x + 18 y + 6 z & = 1 \\12 x + 30 y & = 2 \\18 x + 6 y - 12 z & = - 1\end{array} \right. using an inverse matrix. ​


A) ​ [xyz]=[161213]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { 1 } { 6 } \\\\\frac { - 1 } { 2 } \\\\\frac { 1 } { 3 }\end{array} \right]
B) ​ [xyz]=[161213]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 1 } { 6 } \\\\\frac { - 1 } { 2 } \\\\\frac { - 1 } { 3 }\end{array} \right]
C) ​ [xyz]=[16012]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } \frac { - 1 } { 6 } \\0 \\\frac { 1 } { 2 }\end{array} \right]
D) ​ [xyz]=[01316]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { c } 0 \\\frac { 1 } { 3 } \\\frac { - 1 } { 6 }\end{array} \right]
E) ​ [xyz]=[16013]\left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } \frac { 1 } { 6 } \\0 \\\frac { 1 } { 3 }\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions