Solved

Find Values of X,y,and ? That Satisfy the System {5x5xλ=02y+λ=0yx2=0\left\{ \begin{array} { c } 5 x - 5 x \lambda = 0 \\- 2 y + \lambda = 0 \\y - x ^ { 2 } = 0\end{array} \right.

Question 20

Multiple Choice

Find values of x,y,and ? that satisfy the system.These systems arise in certain optimization problems in calculus,and ? is called a Lagrange multiplier.? {5x5xλ=02y+λ=0yx2=0\left\{ \begin{array} { c } 5 x - 5 x \lambda = 0 \\- 2 y + \lambda = 0 \\y - x ^ { 2 } = 0\end{array} \right. ?


A) ? x=±22,y=12,λ=1 or x=0,y=0,λ=0x = \pm \frac { \sqrt { 2 } } { 2 } , y = \frac { 1 } { 2 } , \lambda = - 1 \text { or } x = 0 , y = 0 , \lambda = 0
B) ? x=±22,y=12,λ=1 or x=0,y=1,λ=1x = \pm \frac { \sqrt { 2 } } { 2 } , y = \frac { 1 } { 2 } , \lambda = 1 \text { or } x = 0 , y = 1 , \lambda = 1
C) ? x=±22,y=12,λ=1 or x=0,y=0,λ=0x = \pm \frac { \sqrt { 2 } } { 2 } , y = \frac { 1 } { 2 } , \lambda = 1 \text { or } x = 0 , y = 0 , \lambda = 0
D) ? x=±22,y=12,λ=1 or x=0,y=0,λ=0x = \pm \frac { \sqrt { 2 } } { 2 } , y = - \frac { 1 } { 2 } , \lambda = 1 \text { or } x = 0 , y = 0 , \lambda = 0
E) ? x=22,y=12,λ=1 or x=0,y=0,λ=0x = - \frac { \sqrt { 2 } } { 2 } , y = \frac { 1 } { 2 } , \lambda = 1 \text { or } x = 0 , y = 0 , \lambda = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions