Solved

Use the Formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )

Question 14

Multiple Choice

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC) a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b) ,a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form.​ 6sin(θ+π4) \sqrt { 6 } \sin \left( \theta + \frac { \pi } { 4 } \right)


A) 3sinθ3cosθ\sqrt { 3 } \sin \theta - \sqrt { 3 } \cos \theta
B) 3sinθ+cosθ\sqrt { 3 } \sin \theta + \cos \theta
C) sinθ3cosθ\sin \theta - \sqrt { 3 } \cos \theta
D) 3sinθ+3cosθ\sqrt { 3 } \sin \theta + \sqrt { 3 } \cos \theta
E) sinθ+cosθ\sin \theta + \cos \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions