Solved

Construct an Appropriate Triangle to Complete the Table (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)

Question 34

Multiple Choice

Construct an appropriate triangle to complete the table. (0θ90,0θπ2) \left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg) θ(rad)  Function Value cscπ6\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { csc } & & \frac { \pi } { 6 } & \\& & & \\\hline\end{array}


A) ?  Function θ(deg) θ(rad)  Function Value csc30π62\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \csc & 30 ^ { \circ } & \frac { \pi } { 6 } & 2 \\\hline\end{array}
B) ?  Function θ(deg) θ( rad )  Function Value csc90π61\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \csc & 90 ^ { \circ } & \frac { \pi } { 6 } & 1 \\\hline\end{array}
C) ?  Function θ( deg ) θ(rad)  Function Value csc45π62\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \csc & 45 ^ { \circ } & \frac { \pi } { 6 } & \sqrt { 2 } \\\hline\end{array} ?
D) ?  Function θ(deg) θ(rad)  Function Value csc0π60\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \mathrm { csc } & 0 ^ { \circ } & \frac { \pi } { 6 } & 0 \\\hline\end{array}
E) ?  Function θ( deg ) θ( rad )  Function Value csc30π6233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \text { rad } ) & \text { Function Value } \\\hline \csc & 30 ^ { \circ } & \frac { \pi } { 6 } & \frac { 2 \sqrt { 3 } } { 3 } \\\hline\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions