Solved

Find the Point (X,y)on the Unit Circle That Corresponds to the Real

Question 23

Multiple Choice

Find the point (x,y) on the unit circle that corresponds to the real number t.​ t=5π6t = \frac { 5 \pi } { 6 }


A) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (12,32) \left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
B) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12) \left( - \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
C) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12) \left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
D) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12) \left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
E) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12) \left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions