Solved

Use the Change-Of-Base Formula to Rewrite the Logarithm as a Ratio

Question 36

Multiple Choice

Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.? f(x) =log15xf ( x ) = \log _ { \frac { 1 } { 5 } } x ?


A) f(x) =log15logx=ln15lnxf ( x ) = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x )  = \log _ { \frac { 1 } { 5 } } x  ? A)   f ( x )  = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)   f ( x )  = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)   f ( x )  = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)   f ( x )  = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)   f ( x )  = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
B) f(x) =logxlog15=lnxln15f ( x ) = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x )  = \log _ { \frac { 1 } { 5 } } x  ? A)   f ( x )  = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)   f ( x )  = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)   f ( x )  = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)   f ( x )  = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)   f ( x )  = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
C) f(x) =logx+log15=lnx+ln15f ( x ) = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x )  = \log _ { \frac { 1 } { 5 } } x  ? A)   f ( x )  = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)   f ( x )  = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)   f ( x )  = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)   f ( x )  = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)   f ( x )  = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
D) f(x) =log15x=ln15xf ( x ) = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x )  = \log _ { \frac { 1 } { 5 } } x  ? A)   f ( x )  = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)   f ( x )  = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)   f ( x )  = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)   f ( x )  = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)   f ( x )  = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }
E) f(x) =logx15=lnx15f ( x ) = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.?  f ( x )  = \log _ { \frac { 1 } { 5 } } x  ? A)   f ( x )  = \frac { \log \frac { 1 } { 5 } } { \log x } = \frac { \ln \frac { 1 } { 5 } } { \ln x }    B)   f ( x )  = \frac { \log x } { \log \frac { 1 } { 5 } } = \frac { \ln x } { \ln \frac { 1 } { 5 } }    C)   f ( x )  = \log x + \log \frac { 1 } { 5 } = \ln x + \ln \frac { 1 } { 5 }    D)   f ( x )  = \log \frac { \frac { 1 } { 5 } } { x } = \ln \frac { \frac { 1 } { 5 } } { x }    E)   f ( x )  = \log \frac { x } { \frac { 1 } { 5 } } = \ln \frac { x } { \frac { 1 } { 5 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions