Solved

Consider the Functions Given by F(x)= X + 3 and F-1(x)=

Question 19

Multiple Choice

Consider the functions given by f(x) = x + 3 and f-1(x) = x - 3.Evaluate f(f-1(x) ) and f-1(f(x) ) for the indicated values of x.What can you conclude about the functions
x10449f(f1(x) ) f1(f(x) ) \begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & & & & \\\hline f ^ { - 1 } ( f ( x ) ) & & & & \\\hline\end{array}


A) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & - 4 & - 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & 4 & 49 \\\hline\end{array} We can conclude that, both the functions have the same value for negative variables
B) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & 4 & 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & 4 & 49 \\\hline\end{array} We can conclude that, both the functions have the same value
C) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & 4 & 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & - 4 & - 49 \\\hline\end{array} We can conclude that, both the functions have the same value for negative variables.
D) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & - 4 & 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & 4 & - 49 \\\hline\end{array} We can conclude that, both the functions are opposite of each other.
E) x10449f(f1(x) ) 10449f1(f(x) ) 10449\begin{array} { | l | l | l | l | l | } \hline x & - 1 & 0 & 4 & 49 \\\hline f \left( f ^ { - 1 } ( x ) \right) & - 1 & 0 & 4 & - 49 \\\hline f ^ { - 1 } ( f ( x ) ) & - 1 & 0 & - 4 & 49 \\\hline\end{array}
We can conclude that, both the functions are opposite of each other.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions