Solved

Determine Algebraically Whether F and G Are Inverse Functions g(x)=x+35g ( x ) = \frac { x + 3 } { 5 }

Question 3

Multiple Choice

Determine algebraically whether f and g are inverse functions. f(x) = 5x - 3 g(x) =x+35g ( x ) = \frac { x + 3 } { 5 }


A) Yes,f and g are inverse functions. f(g(x) ) =f(x+35) =5(x+35) 3=x+33=xf ( g ( x ) ) = f \left( \frac { x + 3 } { 5 } \right) = 5 \left( \frac { x + 3 } { 5 } \right) - 3 = x + 3 - 3 = x g(f(x) ) =g(5x3) =5x3+35=5x5=xg ( f ( x ) ) = g ( 5 x - 3 ) = \frac { 5 x - 3 + 3 } { 5 } = \frac { 5 x } { 5 } = x
B) No,f and g are not inverse functions. f(g(x) ) =f(x+35) =5(x+35) 3=x+33=xf ( g ( x ) ) = f \left( \frac { x + 3 } { 5 } \right) = 5 \left( \frac { x + 3 } { 5 } \right) - 3 = x + 3 - 3 = x g(f(x) ) =g(5x3) =5x3+35=5x5=xg ( f ( x ) ) = g ( 5 x - 3 ) = \frac { 5 x - 3 + 3 } { 5 } = \frac { 5 x } { 5 } = - x

Correct Answer:

verifed

Verified

Related Questions