Solved

Determine Algebraically Whether F and G Are Inverse Functions f(x)=x+6f ( x ) = \sqrt { x + 6 }

Question 30

Multiple Choice

Determine algebraically whether f and g are inverse functions. f(x) =x+6f ( x ) = \sqrt { x + 6 } g(x) = x2 - 6,x ? 0


A) Yes,f and g are inverse functions. f(g(x) ) =f(x26) =(x26) +6=x2=xf ( g ( x ) ) = f \left( x ^ { 2 } - 6 \right) = \sqrt { \left( x ^ { 2 } - 6 \right) + 6 } = \sqrt { x ^ { 2 } } = x g(f(x) ) =g(x+6) =(x+6) 26=x+66=xg ( f ( x ) ) = g ( \sqrt { x + 6 } ) = ( \sqrt { x + 6 } ) ^ { 2 } - 6 = x + 6 - 6 = x
B) No,f and g are not inverse functions. f(g(x) ) =f(x26) =(x26) +6=x2=xf ( g ( x ) ) = f \left( x ^ { 2 } - 6 \right) = \sqrt { \left( x ^ { 2 } - 6 \right) + 6 } = \sqrt { x ^ { 2 } } = x g(f(x) ) =g(x+6) =(x+6) 26=x+66=xg ( f ( x ) ) = g ( \sqrt { x + 6 } ) = ( \sqrt { x + 6 } ) ^ { 2 } - 6 = - x + 6 - 6 = - x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions