Solved

Use the Given Value of K to Complete the Table y=kx2y = k x ^ { 2 }

Question 3

Multiple Choice

Use the given value of k to complete the table for the direct variation model​ y=kx2y = k x ^ { 2 } . ​
Plot the points on a rectangular coordinate system.

x810121416y=kx2k=12\begin{array}{l}\begin{array} { | l | l | l | l | l | l | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = k x ^ { 2 } & & & & & \\& & & & & \\\hline\end{array}\\k = \frac { 1 } { 2 }\end{array}


A) ​ x810121416y=kx232507298128\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = k x ^ { 2 } & 32 & 50 & 72 & 98 & 128 \\\hline\end{array}
 Use the given value of k to complete the table for the direct variation model​  y = k x ^ { 2 }  . ​ Plot the points on a rectangular coordinate system.   \begin{array}{l} \begin{array} { | l | l | l | l | l | l | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & & & & & \\ & & & & & \\ \hline \end{array}\\ k = \frac { 1 } { 2 } \end{array}   A) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 98 & 128 \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 8 & 10 & 12 & 14 & 16 \\ & & & & & \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | r | r | r | r | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 32 & 32 & 32 & 32 \\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 128 & 98 & 72 & 50 & 32 \\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 50 & 32 \\ \hline \end{array}  ​
B) ​ x810121416y=kx2810121416\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = k x ^ { 2 } & 8 & 10 & 12 & 14 & 16 \\& & & & & \\\hline\end{array}
 Use the given value of k to complete the table for the direct variation model​  y = k x ^ { 2 }  . ​ Plot the points on a rectangular coordinate system.   \begin{array}{l} \begin{array} { | l | l | l | l | l | l | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & & & & & \\ & & & & & \\ \hline \end{array}\\ k = \frac { 1 } { 2 } \end{array}   A) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 98 & 128 \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 8 & 10 & 12 & 14 & 16 \\ & & & & & \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | r | r | r | r | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 32 & 32 & 32 & 32 \\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 128 & 98 & 72 & 50 & 32 \\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 50 & 32 \\ \hline \end{array}  ​
C) ​ x810121416y=kx23232323232\begin{array} { | c | c | r | r | r | r | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = k x ^ { 2 } & 32 & 32 & 32 & 32 & 32 \\\hline\end{array}
 Use the given value of k to complete the table for the direct variation model​  y = k x ^ { 2 }  . ​ Plot the points on a rectangular coordinate system.   \begin{array}{l} \begin{array} { | l | l | l | l | l | l | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & & & & & \\ & & & & & \\ \hline \end{array}\\ k = \frac { 1 } { 2 } \end{array}   A) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 98 & 128 \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 8 & 10 & 12 & 14 & 16 \\ & & & & & \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | r | r | r | r | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 32 & 32 & 32 & 32 \\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 128 & 98 & 72 & 50 & 32 \\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 50 & 32 \\ \hline \end{array}  ​

D) ​ x810121416y=kx212898725032\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = k x ^ { 2 } & 128 & 98 & 72 & 50 & 32 \\\hline\end{array}
 Use the given value of k to complete the table for the direct variation model​  y = k x ^ { 2 }  . ​ Plot the points on a rectangular coordinate system.   \begin{array}{l} \begin{array} { | l | l | l | l | l | l | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & & & & & \\ & & & & & \\ \hline \end{array}\\ k = \frac { 1 } { 2 } \end{array}   A) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 98 & 128 \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 8 & 10 & 12 & 14 & 16 \\ & & & & & \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | r | r | r | r | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 32 & 32 & 32 & 32 \\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 128 & 98 & 72 & 50 & 32 \\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 50 & 32 \\ \hline \end{array}  ​
E) ​ x810121416y=kx23250725032\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = k x ^ { 2 } & 32 & 50 & 72 & 50 & 32 \\\hline\end{array}
 Use the given value of k to complete the table for the direct variation model​  y = k x ^ { 2 }  . ​ Plot the points on a rectangular coordinate system.   \begin{array}{l} \begin{array} { | l | l | l | l | l | l | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & & & & & \\ & & & & & \\ \hline \end{array}\\ k = \frac { 1 } { 2 } \end{array}   A) ​ \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 98 & 128 \\ \hline \end{array}  ​   B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 8 & 10 & 12 & 14 & 16 \\ & & & & & \\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | r | r | r | r | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 32 & 32 & 32 & 32 \\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 128 & 98 & 72 & 50 & 32 \\ \hline \end{array}  ​   ​ E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = k x ^ { 2 } & 32 & 50 & 72 & 50 & 32 \\ \hline \end{array}  ​

Correct Answer:

verifed

Verified

Related Questions