Solved

Use the Given Value of K to Complete the Table y=kx2y = \frac { k } { x ^ { 2 } }

Question 15

Multiple Choice

Use the given value of k to complete the table for the inverse variation model​ y=kx2y = \frac { k } { x ^ { 2 } } Plot the points on a rectangular coordinate system.
x810121416y=kx2\begin{array} { | c | c | c | c | c | c | } \hline x & 8 & 10 & 12 & 14 & 16 \\\hline y = \frac { k } { x ^ { 2 } } & & & & & \\\hline\end{array}
k=10k = 10
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.   \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}   k = 10  ​   A)   \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 1 } { 10 } & \frac { 5 } { 72 } \\ \hline \end{array}  B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 72 } & \frac { 1 } { 10 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & 4 & 6 & 8 & 10 & 12 \\ \hline \end{array}  ​


A) x4681012y=kx258518532110572\begin{array} { | c | c | c | c | c | c | } \hline x & 4 & 6 & 8 & 10 & 12 \\\hline y = \frac { k } { x ^ { 2 } } & & & & & \\& \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 1 } { 10 } & \frac { 5 } { 72 } \\\hline\end{array}
B) ​ x4681012y=kx25858585858\begin{array} { | c | c | c | c | c | c | } \hline x & 4 & 6 & 8 & 10 & 12 \\\hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } \\\\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.   \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}   k = 10  ​   A)   \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 1 } { 10 } & \frac { 5 } { 72 } \\ \hline \end{array}  B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 72 } & \frac { 1 } { 10 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & 4 & 6 & 8 & 10 & 12 \\ \hline \end{array}  ​
C) ​ x4681012y=kx257211053251858\begin{array} { | c | c | c | c | c | c | } \hline x & 4 & 6 & 8 & 10 & 12 \\\hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 72 } & \frac { 1 } { 10 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\\\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.   \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}   k = 10  ​   A)   \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 1 } { 10 } & \frac { 5 } { 72 } \\ \hline \end{array}  B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 72 } & \frac { 1 } { 10 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & 4 & 6 & 8 & 10 & 12 \\ \hline \end{array}  ​

D) ​ x4681012y=kx25851853251858\begin{array} { | c | c | c | c | c | c | } \hline x & 4 & 6 & 8 & 10 & 12 \\\hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.   \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}   k = 10  ​   A)   \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 1 } { 10 } & \frac { 5 } { 72 } \\ \hline \end{array}  B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 72 } & \frac { 1 } { 10 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & 4 & 6 & 8 & 10 & 12 \\ \hline \end{array}  ​
E) ​ x4681012y=kx24681012\begin{array} { | c | c | c | c | c | c | } \hline x & 4 & 6 & 8 & 10 & 12 \\\hline y = \frac { k } { x ^ { 2 } } & 4 & 6 & 8 & 10 & 12 \\\hline\end{array}
 Use the given value of k to complete the table for the inverse variation model​  y = \frac { k } { x ^ { 2 } }  Plot the points on a rectangular coordinate system.   \begin{array} { | c | c | c | c | c | c | }  \hline x & 8 & 10 & 12 & 14 & 16 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ \hline \end{array}   k = 10  ​   A)   \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & & & & & \\ & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 1 } { 10 } & \frac { 5 } { 72 } \\ \hline \end{array}  B) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   C) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline \\y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 72 } & \frac { 1 } { 10 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\\\ \hline \end{array}  ​   ​ D) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & \frac { 5 } { 8 } & \frac { 5 } { 18 } & \frac { 5 } { 32 } & \frac { 5 } { 18 } & \frac { 5 } { 8 } \\ \hline \end{array}  ​   E) ​  \begin{array} { | c | c | c | c | c | c | }  \hline x & 4 & 6 & 8 & 10 & 12 \\ \hline y = \frac { k } { x ^ { 2 } } & 4 & 6 & 8 & 10 & 12 \\ \hline \end{array}  ​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions