Solved

Eliminate the Parameter and Write the Corresponding Rectangular Equation Whose x=1+3cosθx = 1 + 3 \cos \theta

Question 12

Multiple Choice

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=1+3cosθx = 1 + 3 \cos \theta y=1+5sinθy = 1 + 5 \sin \theta


A) (x1) 29+(y1) 225=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
B) (x1) 29(y1) 225=1\frac { ( x - 1 ) ^ { 2 } } { 9 } - \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
C) x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
D) ​ x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1
E) (x1) 225(y1) 29=1\frac { ( x - 1 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions