Solved

Select the Parametric Equations Matching with the Following Graph x=15(cosθ+Θsinθ),y=15(sinθΘcosθ)x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )

Question 31

Multiple Choice

Select the parametric equations matching with the following graph.​  Select the parametric equations matching with the following graph.​   ​ A) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )   B) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )   C) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )   D) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )   E) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta )  , y = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )


A) Involute of circle: x=15(cosθ+Θsinθ) ,y=15(sinθΘcosθ) x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )
B) Involute of circle: x=15(cosθ+Θsinθ) ,y=15(sinθ+Θcosθ) x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )
C) Involute of circle: x=15(cosΘΘsinθ) ,y=15(sinθΘcosθ) x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta - \Theta \cos \theta )
D) Involute of circle: x=15(cosθΘsinθ) ,y=15(sinθ+Θcosθ) x = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \sin \theta + \Theta \cos \theta )
E) Involute of circle: x=15(cosθ+Θsinθ) ,y=15(cosθΘsinθ) x = \frac { 1 } { 5 } ( \cos \theta + \Theta \sin \theta ) , y = \frac { 1 } { 5 } ( \cos \theta - \Theta \sin \theta )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions