Solved

Consider the Heat Problem Apply a Fourier Sine Transform U(α,t)=Fs{u(x,t)}U ( \alpha , t ) = \mathcal { F } _ { s } \{ u ( x , t ) \}

Question 24

Multiple Choice

Consider the heat problem k2ux2=ut,0<x<,t>0,u(x,0) =0,u(0,t) =u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , 0 < x < \infty , t > 0 , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 } . Apply a Fourier sine transform. The resulting problem for U(α,t) =Fs{u(x,t) }U ( \alpha , t ) = \mathcal { F } _ { s } \{ u ( x , t ) \} is


A) Ut=kαU+kαu0,U(α,0) =0U _ { t } = - k \alpha U + k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
B) Ut=kα2Ukαt0,U(α,0) =0U _ { t } = - k \alpha ^ { 2 } U - k \alpha t _ { 0 } , U ( \alpha , 0 ) = 0
C) Ut=kα2U+kαt0,U(α,0) =0U _ { t } = - k \alpha ^ { 2 } U + k \alpha t _ { 0 } , U ( \alpha , 0 ) = 0
D) Ut=kα2U+kαu0,U(α,0) =0U _ { t } = k \alpha ^ { 2 } U + k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
E) Ut=kα2Ukαu0,U(α,0) =0U _ { t } = k \alpha ^ { 2 } U - k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions