Solved

The Solution of the Eigenvalue Problem rR+R+rλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 )

Question 6

Multiple Choice

The solution of the eigenvalue problem rR+R+rλR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded, R(3) =0R ^ { \prime } ( 3 ) = 0 is (J0t(zn) =0) \left( J _ { 0 } ^ { t } \left( z _ { n } \right) = 0 \right)


A) λ=zn2,R=J0(znr) ,n=1,2,3,\lambda = z _ { n } ^ { 2 } , R = J _ { 0 } \left( z _ { n } r \right) , n = 1,2,3 , \ldots
B) λ=zn2/9,R=J0(znr/3) ,n=1,2,3,\lambda = z _ { n } ^ { 2 } / 9 , R = J _ { 0 } \left( z _ { n } r / 3 \right) , n = 1,2,3 , \ldots
C) λ=zn,R=J0(znr) ,n=1,2,3,\lambda = z _ { n } , R = J _ { 0 } \left( z _ { n } r \right) , n = 1,2,3 , \ldots
D) λ=zn/3,R=J0(znr/3) ,n=1,2,3,\lambda = z _ { n } / 3 , R = J _ { 0 } \left( z _ { n } r / 3 \right) , n = 1,2,3 , \ldots
E) λ=zn,R=J0(r) ,n=1,2,3,\lambda = z _ { n } , R = J _ { 0 } ( r ) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions