Solved

The Problem y+xyy=0,y(0)=0,y(0)=1y ^ { \prime \prime } + x y y ^ { \prime } = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 1

Question 30

Multiple Choice

The problem y+xyy=0,y(0) =0,y(0) =1y ^ { \prime \prime } + x y y ^ { \prime } = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 1 can be written as a system of two equations as follows.


A) y=u,u=xyu,y(0) =0,u(0) =0y ^ { \prime } = u , u ^ { \prime } = x y u , y ( 0 ) = 0 , u ( 0 ) = 0
B) y=u,u=xyu,y(0) =1,u(0) =0y ^ { \prime } = u , u ^ { \prime } = - x y u , y ( 0 ) = 1 , u ( 0 ) = 0
C) y=u,u=xyu,y(0) =1,u(0) =0y ^ { \prime } = u , u ^ { \prime } = x y u , y ( 0 ) = 1 , u ( 0 ) = 0
D) y=u,u=xyu,y(0) =0,u(0) =1y ^ { \prime } = u , u ^ { \prime } = x y u , y ( 0 ) = 0 , u ( 0 ) = 1
E) y=u,u=xyu,y(0) =0,u(0) =1y ^ { \prime } = u , u ^ { \prime } = - x y u , y ( 0 ) = 0 , u ( 0 ) = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions