Solved

If X1X _ { 1 } And X2X _ { 2 }

Question 5

Multiple Choice

If X1X _ { 1 } and X2X _ { 2 } are solutions of the second order system X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } and Xp\mathrm { X } _ { p } is a particular solution of X=AX+f(t) \mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) , then the general solution of X=AX+f(t) \mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) is


A) X1+X2+Xp\mathrm { X } _ { 1 } + \mathrm { X } _ { 2 } + \mathrm { X } _ { p }
B) X1+X2+c3Xp\mathbf { X } _ { 1 } + \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { p }
C) c1X1+c2X2c _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 }
D) c1X1+c2X2+c3Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { p }
E) c1X1+c2X2+Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + \mathbf { X } _ { p }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions