Solved

Consider the Differential Equation xyxy+y=0x y ^ { \prime \prime } - x y ^ { \prime } + y = 0

Question 6

Multiple Choice

Consider the differential equation xyxy+y=0x y ^ { \prime \prime } - x y ^ { \prime } + y = 0 . The indicial equation is r(r1) =0r ( r - 1 ) = 0 . The recurrence relation is ck+1(k+r+1) +(k+r) ck(k+r1) =0c _ { k + 1 } ( k + r + 1 ) + ( k + r ) - c _ { k } ( k + r - 1 ) = 0 . A series solution corresponding to the indicial root r=0r = 0 is


A) y1=xy _ { 1 } = x
B) y1=x2y _ { 1 } = x ^ { 2 }
C) y1=k=0(2x) k/[k!(1) 13(2k1) ]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 1 ) ]
D) y1=k=0(2x) k/[k!(2k3) !]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! ( 2 k - 3 ) ! ]
E) y1=k=0(2x) k/[k!13(2k3) ]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! 1 \cdot 3 \cdots ( 2 k - 3 ) ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions