Solved

The Recurrence Relation for the Differential Equation 2xyyt+2y=02 x y ^ { \prime \prime } - y ^ { t } + 2 y = 0

Question 27

Multiple Choice

The recurrence relation for the differential equation 2xyyt+2y=02 x y ^ { \prime \prime } - y ^ { t } + 2 y = 0 is


A) ck+1(k+r) (2k+2r1) +2ck=0c _ { k + 1 } ( k + r ) ( 2 k + 2 r - 1 ) + 2 c _ { k } = 0
B) ck+1(k+r) (k+r1) +2ck=0c _ { k + 1 } ( k + r ) ( k + r - 1 ) + 2 c _ { k } = 0
C) ck+1(k+r+1) (2k+2r1) 2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r - 1 ) - 2 c _ { k } = 0
D) ck+1(k+r+1) (2k+2r1) +2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r - 1 ) + 2 c _ { k } = 0
E) ck+1(k+r+1) (2k+2r) +2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r ) + 2 c _ { k } = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions