Solved

Consider the Differential Equation 2x2y+3xy+(2x1)y=02 x ^ { 2 } y ^ { \prime \prime } + 3 x y ^ { \prime } + ( 2 x - 1 ) y = 0

Question 38

Multiple Choice

Consider the differential equation 2x2y+3xy+(2x1) y=02 x ^ { 2 } y ^ { \prime \prime } + 3 x y ^ { \prime } + ( 2 x - 1 ) y = 0 The indicial equation is 2r2+r1=02 r ^ { 2 } + r - 1 = 0 . The recurrence relation is ck[2(k+r) +(k+r1) +3(k+r) 1]+2ck1=0c _ { k } [ 2 ( k + r ) + ( k + r - 1 ) + 3 ( k + r ) - 1 ] + 2 c _ { k - 1 } = 0 . A series solution corresponding to the indicial root r=1r = - 1 is y=x1[1+k=1ckxk]y = x ^ { - 1 } \left[ 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } \right] , where


A) ck=(2) k/[k!(1) 13(2k3) ]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 3 ) ]
B) ck=2k/[k!13(2k3) ]c _ { k } = - 2 ^ { k } / [ k ! 1 \cdot 3 \cdots ( 2 k - 3 ) ]
C) ck=(2) k/[k!(1) 13(2k1) ]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 1 ) ]
D) ck=(2) k/[k!(1) (2k3) !]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) ( 2 k - 3 ) ! ]
E) ck=(2) k/[k13(2k5) ]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 1 \cdot 3 \cdots ( 2 k - 5 ) ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions