Solved

The Differential Equation d2xdt2+xe0.01x=0\frac { d ^ { 2 } x } { d t ^ { 2 } } + x e ^ { 0.01 x } = 0

Question 16

Multiple Choice

The differential equation d2xdt2+xe0.01x=0\frac { d ^ { 2 } x } { d t ^ { 2 } } + x e ^ { 0.01 x } = 0 is a model for an undamped spring-mass system with a nonlinear restoring force. The initial conditions are x(0) =0x ( 0 ) = 0 , x(0) =1x ^ { \prime } ( 0 ) = 1 . The solution of the linearized system is


A) x=(et+et) /2x = \left( e ^ { t } + e ^ { - t } \right) / 2
B) x=(etet) /2x = \left( e ^ { t } - e ^ { - t } \right) / 2
C) x=costx = \cos t
D) x=sintx = \sin t
E) x=costsintx = \cos t - \sin t

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions