Solved

Solve the Differential Equation Using the Method of Variation of Parameters

Question 11

Multiple Choice

Solve the differential equation using the method of variation of parameters. y4y+3y=2sinxy ^ { \prime \prime } - 4 y ^ { \prime } + 3 y = 2 \sin x


A) y(x) =c1sinx+c25x+210sinxy ( x ) = c _ { 1 } \sin x + \frac { c _ { 2 } } { 5 } x + \frac { 2 } { 10 } \sin x
B) y(x) =c1e3x+c2ex+25sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 5 } \sin x
C) y(x) =c1sin3x+c24x+cos3xy ( x ) = c _ { 1 } \sin 3 x + \frac { c _ { 2 } } { 4 } x + \cos 3 x
D) y(x) =c1e3x+c2ex+210sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 10 } \sin x
E) y(x) =c1e3x+c2ex+25cosx+210sinxy ( x ) = c _ { 1 } e ^ { 3 x } + c _ { 2 } e ^ { x } + \frac { 2 } { 5 } \cos x + \frac { 2 } { 10 } \sin x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions