Solved

Evaluate the Surface Integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S }

Question 136

Short Answer

Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } for the given vector field F and the oriented surface S. In other words, find the flux of F across S. F(x,y,z)=xizj+yk, Sis the sphere x2+y2+z2=25\mathbf { F } ( x , y , z ) = x \mathbf { i } - z \mathbf { j } + y \mathbf { k } , \text { Sis the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 in the first octant,
with orientation toward the origin.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions