Solved

Find the Exact Value Of CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r }

Question 14

Short Answer

Find the exact value of CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } where F(x,y)=ex1i+xyj\mathbf { F } ( x , y ) = e ^ { x - 1 } \mathbf { i } + x y \mathbf { j } and C is given by r(t)=2t2i+7t3j,0t1\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } + 7 t ^ { 3 } \mathbf { j } , 0 \leq t \leq 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions